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Supercomputing aware electromagnetics
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Abstract—The Fast Fourier Transform (FFT) extension of the
conventional Fast Multipole Method (FMM) has demonstrated
that it reduces the matrix vector product (MVP) complexity while
preserving the propensity for parallel scaling of the single level
FMM. An efficient hybrid MPI/OpenMP parallel implementation
of the FMM-FFT and, subsequently, an improved nested scheme
of the algorithm, and a combination with MLMFMA have been
employed successfully for the solution of challenging problems
with hundreds of millions of unknowns.

Index Terms—Fast Multipole Method, Fast Fourier Transform,
Multilevel Fast Multipole Algorithm, Supercomputing

I. INTRODUCTION

The last decade sustained a great effort in the development
of fast and efficient algorithms to reduce the computational
cost of the method of moments (MoM). One of the most
important advances was the development of the fast multipole
method (FMM) [1] and its multilevel version, the MLFMA [2].
The FMM reduces the computational complexity from O(N ?)
-using an iterative resolution of the MoM-, to O(N%/2), and
the multilevel versions have achieved O(N log N). So, while
substantially more difficult to implement, the MLFMA has
become the choice when solving large-scale electromagnetic
scattering problems. Simultaneously to these algorithmic ad-
vances, the sustained growth in computer technology has
lead to the availability of computer clusters and multi-core
processors with very large memory and computational capa-
bilities. In this context, the parallelization of the MLFMA has
been an objective of great interest [3], [4], due to its low
computational complexity. However, the parallelization of this
algorithm requires sophisticated load distribution strategies,
often involving different partitions of work across the mul-
tilevel oct-tree, which limits the parallel scalability in modern
high performance computers (HPC).
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A. High scalability algorithms

To deal with the aforementioned trade-off between low-
numerical complexity and high-scalability behavior, we have
concerned with a variation of the FMM, namely the FMM-
Fast Fourier Transform (FMM-FFT). We have demonstrated
that this variation allows to take advantage of the large amount
of computational resources that are available in current HPC
systems. The FMM-FFT was first proposed in [5] as an
acceleration technique applied to almost planar surfaces. Later
on, a parallelized implementation was applied to general three-
dimensional geometries [6]. The method consists of employing
the FFT to speedup the translation stage in the framework
of the FMM strongly reducing its computational complexity.
Although in general it is not algorithmically as efficient as the
MLFMA, it has the advantage of preserving the natural parallel
scaling propensity of the single-level FMM in the spectral (k-
space) domain. The concurrence of the reduced complexity
with the propensity for high scalability makes the FMM-FFT
algorithm a very attractive alternative in massively parallel
supercomputers. An efficient parallel implementation of the
method has been used by the authors to solve, among others,
a problem with more than 150 millions of unknowns [7].

To deal with very large problems involving hundreds of
millions of unknowns where the amount of memory becomes
a critical issue, we have proposed a variation of the al-
gorithm [8], [9]. It applies a nested FMM-FFT scheme to
calculate the near-field contributions and the aggregation and
disaggregation matrices, achieving a slightly worse parallel
performance but in exchange for lower memory consumption.
From one or more refinement steps of the hierarchical oct-
tree decomposition, the nested algorithm carries out the far-
field computation at the coarsest oct-tree level as in the
original FMM-FFT, while obtaining the near-field interactions
at the finest level by using one or more local shared memory
FMM-FFT algorithms inside each computing node. Finnally a
combination of the FMM-FFT techniques with MLFMA deal
with a problem of 620 million unknowns, the bigger problem
solved in electromagnetics as far as we know.

As it is described in Figure 1, more and more demanding
problems have been tackled by means of these approaches
and the available computational resources. These world record
challenges has resulted in various international awards in
computationally intensive applications in 2009 (International
PRACE Award and Itanium Innovation Award).

II. FMM-FFT, NESTED FMM-FFT AND MLFMA-FFT
PARALLEL IMPLEMENTATIONS

A hybrid parallel programming by combining the Message
Passing Interface (MPI) with the OpenMP standard has been
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Fig. 1. Challenges course.

selected for the MLFMA-FFT, the FMM-FFT method and
the nested algorithm implementations. This hybrid parallel
programming allows to fit the architecture characteristics of
large mixed memory computers (distributed clusters of shared-
memory nodes).

A three stage parallelization strategy has been considered
for the FMM-FFT. It is determined by the following key
points: a distribution of k-space samples among processors to
account for the far-field interactions taking advantage from its
independence; a distribution of oct-tree groups for near-field
interactions; a distribution of unknowns for the iterative solver.
This strategy leads to optimal load balancing and data locality,
while it minimizes the memory footprint and communication
requirements.

Regarding the parallelization strategy considered for the
nested FMM-FFT, it implies the following stages: for the far
interactions, a mixed approach is applied by distributing by
groups at the finest level and distributing by field samples at
the coarsest level. For the near interactions, a well-balanced
partition of work by groups at the finest level is applied.
Finally, the iterative solver is distributed by equal number of
unknowns per processor. The use of a two-level scheme to ob-
tain the far interactions requires the interpolation/anterpolation
of outcoming/incoming fields across the two levels. On the
other hand, the different partition of work, by groups and by
fields, implies inter-node communications during the MVP.
The MPI library provides an efficient management of all the
required the communications.

Regarding the MLFMA-FFT method we use a paralleliza-
tion strategy based on distributing the MLFMA between nodes
(solved internally by OpenMP). The rest of parallelization
strategy is simmilar to FMM-FFT.

Figure 2 makes a comparison between the scalability be-
havior of both the FMM-FFT and the nested FMM-FFT

methods. It can be seen that the additional communications
required during the MVP in the nested algorithm due to the
interpolation/anterpolation of fields has a reduced impact on
the scalability.
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Fig. 2. PEC sphere problem with 10 million unknowns. (a) Parallel speed-up
for the FMM-FFT algorithm. (b) Parallel speed-up for the nested FMM-FFT
algorithm.

III. CHALLENGING NUMERICAL RESULTS

The outstanding results obtained using the FMM-FFT and
the nested FMM-FFT approaches are those corresponding to
the 150 and 500 millions of unknowns challenges mentioned in
previous sections. Both results were performed using the HPC
supercomputer Finis Terrae, installed in the Supercomputing
Centre of Galicia (CESGA). Finis Terrae consists of 142 cc-
NUMA HP Integrity rx7640 with 8 dual core Intel Itanium
2 Montvale processors at 1.6 GHz with 18 MB L3 cache
and 128 GB of memory, and two Integrity Superdome nodes,
one of them with 128 cores and 1,024 GB of memory, and
the other with 128 processors (single core) and 384 GB of
memory. Besides, there are two special nodes with 4 cores
and 4GB of memory for testing and development purposes.
Altogether, they sum more than 2,500 cores and 19,000 GB
of memory, being one of the computers with the best ratio
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memory/processor in the world. The nodes are interconnected
through a high efficiency Infiniband network (4xDDR), and the
operating system is Linux SLES 10. The data storage system
consists of 22 nodes with 96 cores for management, 390 TB
in disks and 1 PB in Robot Tape Library. The Intel C++
Compiler version 11.0.069, and Intel MPI version 3.2.0.011 for
internode communications have been used. For matrix/vector
linear algebra operations we have employed the Intel Cluster
MKL version 10.0.2.018.

Regarding the electromagnetic formulation, the examples
have been addressed with an Electric Field Integral Equation
(EFIE) based Method of Moments formulation, in which the
well-known Rao-Wilton-Glisson (RWG) basis functions [10]
have been applied both in the discretization of the geometry
and the Galerkin’s testing procedure. No preconditioning has
been considered and the iterative solver has been GMRES
[11].

The geometries considered in the simulations were PEC
spheres. The main configuration parameters of both methods
and the technical data corresponding to the results are gathered
in Table I. Even in this case where there is a significant
difference between the number of unknowns solved, it is clear
than the total memory saving obtained when using the nested
FMM-FFT algorithm is important.

TABLE I
TECHNICAL DATA FOR THE SOLUTION OF ELECTROMAGNETIC PROBLEMS
OF 150 AND 500 MILLIONS OF UNKNOWNS OBTAINED WITH THE
FMM-FFT AND THE NESTED FMM-FFT METHODS, RESPECTIVELY.

FMM-FFT Nested FMM-FFT
Sphere diameter 400\ 728.36)\
Frequency 300 MHz 300 MHz
Num. of unknowns 150, 039, 552 500, 159, 232
Groups dimensions
(fine / coarse level) 2 0.5X /7 4\
Num. of nodes
/ processors per node 64/ 16 64/ 16

Min. / max. peak

memory in node 76.3 GB / 84.7 GB | 89.2 GB / 99.9 GB

Total memory 5.4 TB 6 TB
Num. of iterations

/ GMRES restart 11/ 10 10/ 10
Setup / solution time 66 min / 5 h 5h/26h

From the obtained distribution of the surface current density,
the bistatic radar cross section (RCS) was computed. An
excellent agreement between the numerical results and the
analytical solution provided by the Mie series was obtained
in both cases. The solution corresponding to the 0.5 billions
of unknowns problem is shown in Figure 3 in order to illustrate
this concordance.

The MLFMA-FFT simulations were carried out using
the LUSITANIA supercomputer, installed in the Centro Ex-
tremefio de Investigacién, Innovacidéon Tecnoldgica y Super-
computacién (CénitS). Lusitania is made up of 2 HP Integrity
SuperDome SX2000 nodes with 64 dual core Itanium2 Mont-
vale processors at 1.6 GHz (18 MB cache). The 79 GHz radar
cross section (RCS) analysis of a car (CITROEN C3) using the
MLFMA-FFT has been carried out. The 77-81 GHz frequency
band has been designed for the automotive collision warning
future Short Range Radars (SRR). For this reason, modeling
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Fig. 3. Bistatic RCS of more than 0.5 billion of unknowns PEC sphere
obtained with the nested FMM-FFT algorithm.

the electromagnetic behavior of a car at 79 GHz is of great
interest for the automotive industry. The large size of the
required analysis has made difficult to obtain suitable results
up to now. Instead of resorting to asymptotic approaches with
reduced accuracy, a reliable result can be achieved by means of
the MLFMA-FFT method. This example has been performed
employing the LUSITANIA supercomputer described above.
A total of 1.6 TB of RAM and 2 HP Integrity SuperDome
SX2000 nodes with 128 processors have been used. The
model of the car is made up of 620 million unknowns. Both
configuration and solution related data are gathered in Table
2. The 79 GHz bistatic RCS result is shown in Figure 4. A

TABLE II
TECHNICAL DATA FOR THE SOLUTION OF ELECTROMAGNETIC PROBLEM
OF 620 MILLIONS OF UNKNOWNS OBTAINED WITH THE MLFMA-FFT

ALGORITHM.
Frequency 79 GHz
Number of unknowns 620,739,632
Groups dimensions
(fine / coarse level) 02X/ 125X

Number of levels 7
Multipole terms 4/7/11/18/29/52/95
Number of total
/non-empty groups
(fine level)
Number of total
/non-empty groups
(coarse level)
Num. of nodes

16,841,845,020/31,201,960

66,600/7,848

/ processors per node 2/ 128
Min. / max. peak

memory in node 816GB / 821GB
Total memory 1.6 TB
Num. of iterations

/ GMRES restart 5/50
Setup / solution time 365/432h

front incidence (0 = 90°, ¢ = 270°) has been considered.
Due to the rapid fluctuation of the RCS pattern with changing
aspect angle, a window of 2° has been selected to calculate
the median value of the RCS in the backward direction, which
results 0.34 dBsm. As far as we know, this is the largest
electromagnetic problem solved until now.
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Fig. 4. Bistatic RCS of a 620 million unknowns car at 79 GHz.

IV. CONCLUSIONS

An efficient parallelization of the FMM-FFT algorithms has
been implemented, exploiting its natural high scaling proper-
ties to benefit from the availability of massively distributed
supercomputers. In order to accomplish the analysis of very
large-scale scattering problems, a nested configuration of the
method that improves the memory requirements has been
also proposed. These efficient algorithms in addition with
the computational resources provided by the supercomputers
Lusitania and Finis Terrae, have allowed us to address the elec-
tromagnetic scattering of large problems involving hundred of
millions of unknowns in the course of 2008 and 2009.

During 2010, we applied to the Spanish Government for the
use of a ICTS center for the solution of a problem with more
than one billion unknowns.
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